博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Prufer codes与Generalized Cayley's Formula学习笔记
阅读量:6214 次
发布时间:2019-06-21

本文共 2423 字,大约阅读时间需要 8 分钟。

\(Prufer\)序列

在一棵\(n\)个点带标号无根树里,我们定义这棵树的\(Prufer\)序列为执行以下操作后得到的序列

1.若当前树中只剩下两个节点,退出,否则执行\(2\)

2.令\(u\)为树中编号最小的叶子节点,记\(v\)为唯一与\(u\)有边相连的节点,把\(u\)删去,并将\(v\)加入到序列的末尾,重复\(1\)

显然,得到的\(Prufer\)序列是一个长度为\(n-2\)的序列

易证每一棵\(n\)个节点的有标号无根树都唯一对应一个长度为\(n-2\)\(Prufer\)序列

无根树对应序列很容易证明,接下来我们要证明的是序列唯一对应无根树。我们只要知道如何根据序列求对应的无根树,并且保证求出的无根树唯一即可

根据序列求无根树,就是重复下列过程

1.令\(A=\{1,2,3,...,n\}\),不断重复\(2\)直到\(Prufer\)序列为空

2.找到\(A\)中最小的不在\(Prufer\)序列中的元素,将其与\(Prufer\)序列首元素连边,同时删除这个点和\(Prufer\)序列首元素

3.此时\(A\)中还剩下两个点,将它们连边即可

不难看出,如果一个点在树中度数为\(deg_i\),那么它在\(Prufer\)序列中的出现次数为\(deg_i-1\)

\(Cayley's\ Formula\)

因为长度为\(n-2\),每个元素取值范围为\([1,n]\)的序列个数为\(n^{n-2}\),根据无根树与\(Prufer\)序列的一一对应关系,有

\(n\)个点带标号无根树的个数为\(n^{n-2}\)

另外还有一个拓展

设树中点\(i\)的度数为\(d_i\),那么对应的无根树数量为\({(n-2)!\over \prod_{i=1}^n d_i}\)

\(Generalized\ Cayley's\ Formula\)

\(f(n,m)\)\(n\)个点构成\(m\)棵树,且\(1,2,3...,m\)全都不在同一棵树中,的方案数,有标号,无根

先给结论

\[f(n,m)=mn^{n-m-1}\]

\(m=1\)时有\(f(n,1)=n^{n-2}\),即为\(Cayley's\ Formula\)

证明的话,我们采用归纳法

首先对于边界条件,有\(f(1,1)=1,f(n,0)=0\)

我们假设对于所有\(k<n\)\(f(k,m)=mk^{k-m-1}\)恒成立,接下来我们要证明\(f(n,m)=mn^{n-m-1}\)

为了方便起见,我们

我们枚举\(1\)号点的度数\(i\),以及与\(1\)相连的这\(i\)个点,那么去掉\(1\)号点之后,会留下\(n-1\)个点和\(m+i-1\)棵树,于是有

\[f(n,m)=\sum_{i=0}^{n-m}{n-m\choose i}f(n-1,m+i-1)\]

根据归纳,因为对于所有\(k<n\)\(f(k,m)=mk^{k-m-1}\)恒成立,所以

\[ \begin{aligned} f(n,m) &=\sum_{i=0}^{n-m}{n-m\choose i}f(n-1,m+i-1)\\ &=\sum_{i=0}^{n-m}{n-m\choose i}(m+i-1)(n-1)^{n-m-i-1}\\ \end{aligned} \]

我们把\(i\)变成\(n-m-i\),柿子变成

\[ \begin{aligned} f(n,m) &=\sum_{i=0}^{n-m}{n-m\choose i}(n-i-1)(n-1)^{i-1}\\ &=\sum_{i=0}^{n-m}{n-m\choose i}(n-1)(n-1)^{i-1}-\sum_{i=0}^{n-m}{n-m\choose i}i(n-1)^{i-1}\\ &=\sum_{i=0}^{n-m}{n-m\choose i}(n-1)^i-\sum_{i=0}^{n-m}{n-m\choose i}i(n-1)^{i-1}\\ \end{aligned} \]

前面那个东西,根据二项式定理,为\(n^{n-m}\)

后面那个东西,我们把\({n-m\choose i}i\)化为\({n-m-1\choose i-1}(n-m)\)

\[ \begin{aligned} \sum_{i=0}^{n-m}{n-m\choose i}i(n-1)^{i-1} &=\sum_{i=0}^{n-m}{n-m-1\choose i-1}(n-m)(n-1)^{i-1}\\ &=(n-m)\sum_{i=0}^{n-m-1}{n-m-1\choose i}(n-1)^i\\ &=(n-m)n^{n-m-1} \end{aligned} \]

代入柿子即可

定理拓展

\(n\)个带权的点,边的权值为连接两点点权之积,树的权值为所有边权值之积,求所有树的权值之和

\(i\)的度数为\(d_i\),权值为\(val_i\),则一棵树的权值即为

\[\prod_{i=1}^n{val_i}^{d_i}\]

考虑\(Prufer\)序列,每个点恰出现\(d_i-1\)次,那么根据乘法分配律,答案为

\[\left(\prod_{i=1}^n{val_i}\right)\left(\sum_{i=1}^nval_i\right)^{n-2}\]

这个东西似乎包含了上面的所有定理。当所有点权值为\(1\)时,就是\(Cayley's\ Formula\)。当把\(1\)\(m\)缩成一个权值为\(m\)的点时,就是\(Generalized\ Cayley's\ Formula\)

参考资料

转载于:https://www.cnblogs.com/bztMinamoto/p/10661891.html

你可能感兴趣的文章
LAMP架构
查看>>
usermod-passwd-mkpasswd
查看>>
分布式架构2--CentOs下安装Tomcat7(环境准备)
查看>>
缓存系统中面临的雪崩/穿透/一致性问题
查看>>
新建一个vue项目
查看>>
SpringCloud微服务云架构构建B2B2C电子商务平台之-服务的注册与发现Eureka
查看>>
0326VIM工具
查看>>
Spark On Yarn
查看>>
Springboot 命令注入属性[--]&[-D]
查看>>
OSChina 周一乱弹 ——周日晚上,高跟鞋坏了。
查看>>
OSChina 周六乱弹 —— 看见这花臂了么?赶紧叫大佬!
查看>>
各种架构图
查看>>
[小脚本] bash维护并行下载任务
查看>>
SQL 左外连接,右外连接,内连接 | GRUP BY, HAVING
查看>>
redis单机安装
查看>>
普通java项目打jar包运行
查看>>
ABBYY FineReader 12中怎样自定义主窗口
查看>>
使用 highlight.js 高亮网站代码
查看>>
笨兔兔的故事——带你了解Ubuntu,了解Linux 第二章 醒来
查看>>
spark sql简单示例
查看>>